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Abstract W - ‘

We extend cryptographic techniques to the protection of the application of stamps
for mail. We show how to provide electronic stamps (using off-the-shelf bar
code technology to represent a cryptographic message) to use in a fully integrated
franking system that provides protection against:

1. Tampering with postage meter to given the user additional credit:
2. Forged or copied electronic stamps;
3. Unauthorized use of a postage meter; and

4. Stolen postage meters.

We relate the question of electronic stamps to broader issues in electronic currency
and secure coOprocessors.




1 Introduction

While cryptographic methods have long been associated with mail (dating back
to the use by Julius Caesar described in his book The Gallic Wars |3)]), they have
generally been used to protect the contents of a message, or in rare cases, the
address on an envelope (this is known as “protecting against traffic analysis™). In
this technical note, we describe the advantages of using cryptographic techniques
to protect the stamp on an envelope!

Consider the case of the US Postal Service, with almost 40,000 autonomous
post office facilities, which handles over 165 billion pieces of mail each year. The
vast majority are metered, which means that the envelope is imprinted by machine
with a postage amount. (Figure | shows an example of 4 metered letter.) Each
postage meter is sealed with a postage credit by a post »ffice; as each letter i
stamped, the amount is deducted from the machine’s credit. Postal meters are
subject to at least four types of attack:

1. The postage meter recorded credit may be tamperad with, giving the user
postage not paid for;

2. The postage meter stamp may be forged or copied;
3. A valid postage meter may be used by an unauthorized person; and

4. A postage meter may be stolen.

With modern facilities for barcoding digital information which is machine
readable, it is now easy to replace old-fashioned human readable stamps by stamps
which are entirely or partially machine readable. These stamps could encode a
digitally signed message which would guarantee the authenticity of the stamp.
If this digital information included unique data about the letter (such as the date
mailed, zip codes of the originator and recipient, etc.), the digitally signed stamp
could be used to protect against forged or copied stamps. A rough outline of how
such a system might work was detailed by Pastor | 19].

Unfortunately, a digitally signed stamp is vulnerable to four additional types
of attack:

1. Cryptographic techniques are vuinerable to misused, leading to a system
that can be successfully attacked by an adversary.




Figure 1: Today’s metered letters have a simple imprint that can be easily forged.

2. The postage meter credit may still be tampered with, even if cryptographic
techniques are used.

3. Apostage meter may be opened up and examined by an adversary to discover
any cryptographic keys that are used, thus allowing the adversary to build
new bogus postage meters.

4. The protection scheme may depend on a highly availabie network con-
necting post office facilities in a large distributed database. Since 39,985
autonomous post office facilities exist, such a network would suffer from fre-
quent failures and partitions. Moreover, with a volume of 165,850,000,000
pieces of mail each year, a database to check the validity of digitally signed
stamps appears infeasible.

This techaical note outlines a protocol for protecting electronic stamps, and
demonstrates that the use of currently available secure coprocessor technology
can address all of the above concerns. With the use of cryptography and secure
coprocessors, both postage meters and stamps can be made fully secure and
tamper-proof.

2 Cryptographic Stamps and Electronic Postage Me-
ters

What do we mean by a cryptographic stamp? What properties must an electronic
postage meter have? By examining the properties that we wish cryptographic
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stamps to have, we will obtain the overall system requirements for electronic
postage meters.

A cryptographic postage stamp is an imprint that demonstrates to the postal
carrier that postage has been paid. Unlike the usual stamps purchased at a post
office, these are printed by a laser printer and affixed onto an envelope or a package.
Because such printed stamps can be easily copied, cryptographic and procedural
techniques must be employed to minimize the probability of forgery.

We use cryptography to provide a crucial property: a malicious user may copy
a stamp, but any attempts to modify it will be detected. To achieve this goal,
we encode as part of the stamp all the information relevant to the delivery of the
particular piece of mail — e.g., the return as well as the destination address. the
amount of postage, and class of mail, etc — as well as other identifying information,
such as the serial number of the postage meter, a serial number for the stamp, and
the date/time (a timestamp). All of the information is digitally encoded and then
signed cryptographically, preventing forgeries. This information along with the
cryptographic signature is put into a barcode format printed via a laser printer.
The encoding format must be easily printable by “commodity™ or “after-market”
laser printers, it must be easily scanned and re-digitized at a post office, and it
must have sufficient information density to encode all the bits of the stamp on the
envelope within a reasonable amount of space. Appropriate technologies include
Coded49(18], Codel6K[12], and PDF417 [21, 20, 11]. Symbol Technologies’
PDF417, in particular, is capable of encoding at a density of 400 bytes per square
inch, which is sufficient for the size of cryptographic stamps needed to provide the
necessary security in the foreseeable future. Figure 2 demonstrates the amount of
information that can be encoded’.

The cryptographic signature within the stamp prevents many forms of “replay”
attacks. Malicious users will not find it that useful to copy the stamps, since the
cryptographic signature prevents them from modifying the stamp to change the
destination addresses, etc, so the copied stamps may only be used — barring
duplicate detection — for sending more mail to the same destination address. The
timestamps and serial numbers also help to limit the scope of the attack. limiting
the “lifetime” of copies and permitting law enforcement to trace the source of the
attack back to a unique postage meter.

Because the cryptographic stamp also includes source information — the
postage meter serial number provides the general physical location of the meter,

"This figure was provided courtesy of Symbol Technologies Inc.




Figure 2: PDF417 encoding of The Gettysburg Address

as does the return address — duplicated stamps can also be detected in a distributed
manner. Replays are detected by logging the recent, unexpired stamps from all
postage meters that have been canceled by the postal system. If ever a piece of
mail with a duplicate stamp is found, we will know that some form of forgery has
occurred. We will examine the practicality of replay detection later in Section 5.4.

While databases at region offices can deter replay attacks, we need some way
to protect the cryptographic keys within the postage meters as well — attackers
who gain access to the keys within a secure coprocessor can use them to fraudu-
lently sign as many stamps as they wish. The only way to prevent malicious users
from accessing cryptographic keys require not just physically protected memory
(such as found in many “dongle” type devices) but also require secure processing
of the cryptographic keys. Without the ability to privately perform computations
using the cryptographic keys, an adversary may simply place logic analyzer probes
to listen in on the address/data buses and obtain key values. Alternatively, the
adversary may replace the memory subsystem in the computer with dual ported
memory, and just read the keys as they are used. Further, note that even password
protected, physically secure memory such as that that provided by some dongles
(e.g., Dallas Semiconductor DS142x “Software Authorization Button™ with in-
terface DS1410) is insufficient — the PC software must contain the passwords
required to access that protected memory, and even if attackers don’t know how




to disassemble the software to obtain the passwords, they can easily read it off of
the wires of the parallel port as the passwords are sent to the dongie.

Private processing of cryptographic keys is a necessary condition for cryp-
tography. Not only is this requirement necessary for running real cryptographic
protocols, it is also a requirement for keeping track of the amount of credit that
remains in a electronic postage meter. Along with the secure credit counter, more
protected computation is required to establish secure channels of communication
when the credit value is updated — the electronic postage meter must commu-
nicate with thc post office when the user buys more postage, and cryptographic
protocols must be run over the communication lines (e.g., phone lines via modem
or some other kind of direct network connection) to prevent tampering with the
update. Establishing a secure communication channel requires cryptography, and
again we need a safe place to keep cryptographic keys and a place to perform
secure computation.

To achieve private, tamper-proof computation, a processor with non-volatile
memory for key storage, and perhaps some normal RAM as scratch space (to hold
intermediates in the calculations) must also be made physically secure. We call
such a system a secure coprocessor{26]. In the next section we will give a brief
summary of its properties.

3 Secure Coprocessor Model

A secure coprocessor is an ideal place to perform secure, private computation
such as that required in all cryptographic protocols. A secure coprocessor is a
hardware module containing (1) a CPU, (2) ROM, and (3) NVM (non-volatile
memory). This hardware module is physically shielded from penetration, and the
/O interface to this module is the only means by which access to the internal
state of the module can be achieved. Such a hardware module can be used to
store cryptographic keys without risk of release of those keys. More generally,
the CPU can perform arbitrary computations and thus the hardware module, when
added to a computer, becomes a true coprocessor. Often, the secure coprocessor
will contain special purpose hardware i addition to the CPU and memory; for
example, high speed encryption/decryption hardware may be used®.

2High speed DES chips are available from several sources, including Cylinks. Comtech,
IBM[17, 29], and DEC[7].




The packaging technology required to achieve the physical protection exists
today. Examples of this at varying scales include the pAbyss and Citadel systems
at IBM Research [29, 28] and NSA’s proposed DES replacement SKIPJACK
[2, 22]. Smart cards [14] also achieve many of the same privacy properties by
the virtue of their portability: users carry smart cards in their wallets rather than
leaving them on top of desks.

Advanced packaging technology can protect secure coprocessors — we assume
that the coprocessor is packaged in such a way that physical attempts to gain access
to the internal state of the coprocessor will result in resetting the state of the secure
coprocessor (i.e., erasure of the NVM contents and CPU registers). An intruder
may break into a secure coprocessor and look inside to see how it’s constructed;
the intruder can not, however, affect or learn the internal state of the secure
coprocessor except through normal I/O channels or by forcibly resetting the entire
secure coprocessor. The guarantees about the privacy and integrity of non-volatile
memory provide the foundations needed to build secure systems.

3.1 Physical Assumptions for Security

Our basic assumption is the existence of private and tamper-proof processing in a
coprocessor. Just as attackers can exhaustively search cryptographic key spaces.
it may be possible to overcome the physical protections by expending enormous
resources (possibly feasible for very large corporations or government agencies),
but we will assume the physical security of the system as an axiom. This is a
physical work-factor argument, similar in spirit to intractability assumptions of
cryptography Our secure coprocessor model does not depend on the particular
technology used to satisfy the work-factor assumption. Just as cryptographic
schemes may be scaled to increase the resources required to penetrate a crypto-
graphic system, current security packaging techniques may be scaled or different
packaging techniques may be employed to increase the work-factor necessary to
successfully bypass the physical security measures.

3.2 Limitations of Model

Even though ideally (for security purposes) we would like to somehow make the
scales and the postage printer physically secure also, such a goal is impractical —
the secure postage meter must be accessible to ordinary users rather than be locked
away in vaults, Furthermore, current packaging technology limits the amount of
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circuitry that we can protect to approximately one printed circuit board in size due
to heat dissipation and other concerns.

Future developments in packaging techniques may eventually relax this and
allow us to make more solid-state components physically secure (e.g., more mem-
ory), but the security problems of secure communication (for credit transfers) and
external mass storage remain a constant.

Countering our desire to encapsulate the entire system within a physically
protected environment, the desire to make a system easy to maintain forces us
to use modular design and construction techniques. Once a hardware module is
encapsulated in a physically secure package, disassembly of the module to fix or
replace some defective component will probably be very difficult if not impossible.
The right balance between physically shielded and unshielded components will
depend on the applications for which the system is intended and the reliability and
security properties desired.

4 Electronic Currency and Postage

In the original form of imprints made on letters/packages, postage “stamps”™ were
ink-stamps which showed that the postage has been paid. In the form of the every-
day postage stamps that one purchases at the post office, stamps are transferable
single-use tokens that enable a piece of mail to be delivered — the cancellation of
the stamp uses it up and “pays” for the delivery service. Abstractly, then, we may
think of postage stamps as another form of currency: we are doing nothing more
than currency exchange when we go to the post office to buy stamps. Unlike the
gold standard, stamps-as-currency are backed by this promise of delivery service®.
In the past people have accepted postage stamps in lieu of currency.

Postage meters provide an intermediate model — a postage meter is a container
of currency: meters are “refilled” at a post office when currency exchange takes
place, and the filled postage meters can then dole out postage as needed at more
convenient locations. When postage is used, the meter marks envelopes to show
proof of payment. Thus, abstractly, a postage meter is a device that holds currency,
allowing only two operations: (1) a post office may increment the amount of
available postage, and (2) a user may decrement the amount of available postage,
simultaneously stamping a piece of mail with the quantity just decremented. We

YUnlike other currencies, stamps have a |- conversion rate with Federal Reserve Notes. and
“inflation” occurs when postage increases are decreed.




will show how we can achieve an electronic version of the old physical postage
meter that provides the same operational properties along with far greater security
guarantees.

Protecting the money (postage) contained in an electronic postage meter is a
weaker form of the electronic currency problem: we do not need to transfer cur-
rency between postage meters very often, nor are the anonymity requirements quite
so strict. We can view the use of that electronic currency to stamp mail as simply
a purchase using the electronic currency, where the stamp is cryptographically
protected from the attacks mentioned above in Section |.

Before we look at implementing a secure electronic postage meter, we first
examine the properties of several electronic currency models and how secure
coprocessors enable their implementation.

4.1 Electronic Currency Models

There are several models that can be adopted for handling electronic funds. After
briefly describing these models, we examine their properties and deduce their
system requirements. Furthermore, we examine whether secure coprocessors can
accommodate these requirements. We assume in our analysis that we can equip
every workstation or PC with a secure coprocessor.

The first model is the cash analogy. Electronic funds are treated as cash and
have the same properties: (1) exchanges of cash can be effectively anonymous, (2)
cash can not be created or destroyed, (3) cash exchanges require no central author-
ity. (Note that these properties are not absolute even with cash — serial numbers
can be recorded to trace transactions, and the U. S. Treasury regularly prints and
destroys money.) Normal postage stamps have much the same properties.

The second model is that of a credit cards/checks analogy. Electronic funds
are not transferred directly; rather, promises of payment — perhaps cryptograph-
ically signed to prove authenticity — are transferred instead. A straightforward
implementation of this model fails to exhibit any of the three properties above; by
applying cryptographic techniques{4], anonymity can be achieved, but the latter
two requirements remain insurmountable. Checks must be signed and validated at
central authorities (banks), and checks/credit payments en route “create” tempo-
rary money. Furthermore, the potential for reuse of cryptographic signed checks
requires that the recipient must be able to validate the check with the central
authority prior to committing in a transaction.

The third model is analogous to a rendezvous at the bank. This model uses
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a centralized authority to authenticate all transactions and so is even worse for
large distributed applications. However, this scheme — and to some extent the
previous one — makes the problem of security less difficuit. The bank is the sole
arbiter of the account balance and can easily implement the access controls needed
to ensure privacy and integrity of the data. This is essentially the model used in
Electronic Funds Transfer (EFT) services provided by many banks — there are
no access restrictions on deposits into accounts, so only the owner of the source
account needs to be authenticated.

4.2 Currency Model Analysis

Let us examine these models one by one. What sort of properties must electronic
cash have and what sort of system requirements do these properties impose on us?

With electronic currency, integrity of the accounts data is crucial. Attackers
should not be able to inject or replay messages during currency transfers and
otherwise change the outcome of the transfers. This is especially important in the
cash model, where secure coprocessors are the users’ wallets and, unlike the other
models, there are no central agency for :esolving disputes.

By using the privacy assumption we can establish a secure communication
channel between two secure coprocessors via encryption. This allows us to main-
tain privacy when transferring funds. By running a key exchange protocol to obtain
new, single-use session keys every time we set up a connection with another secure
coprocessor, communication based attacks are prevented: data that were recorded
frorn a previous session would be meaningless if subsequently re-injected into the
communication channel.

To ensure that electronic money is conserved (neither created nor destroyed),
the transfer of funds shouid be fai'ure atomic, i.e., the transaction must terminate in
such a way as to either fail completely or fully succeed — transfer transactions can
not terminate with the source balance decremented without having incremented the
destination balance or vice versa. By running a (ransaction protocol such as two-
phase commit {5, 1, 30] on top of the secure channel, the secure coprocessors can
transfer electronic funds from one account to another in a safe manner, providing
privacy as well as ensuring that money is conserved throughout. With most
transaction protocols, some “stable storage” for transaction logging is needed
to enable the system to be restored to the state prior to the transaction when a
transaction aborts, On large transaction systems this typically has meant mirrored
disks with uninterruptible power supplies. With the simple transfer transactions
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needed, the per-transaction log typically is not that large. and the log can be
truncated once transactions commit. Because secure coprocessors need to handle
only a handful ot users (workstations or PCs are typically single user machines,
and the users are unlikely to require many concurrent transactions, large amounts
of stable storage should not be needed — we have non-volatile memory within the
secure coprocessors and we only need to reserve some of this memory for logging.

The transaction logs, accounts data, and controlling executable code are all
protected by the secure coprocessor from modification: accounts are safe from
all but bugs and catastrophic failures. Of course, the system should be designed
so that users should have little or no incentive to destroy secure coprocessors that
they can access — which should be natural when their own balances are stored on
secure coprocessors, much as real cash inside of wallets.

Note that this type of decentralized electronic currency is nor appropriate for
smart cards unless they can be made physically secure from attacks by their owners.
Smart cards are only quasi-physically-secure in that their privacy guarantees stem
solely from their portability. Secrets may be stored within smart curds because
their users can provide the physical security necessary. Malictous users, however.
can easily violate the integrity of their smart cards and insert false data.

This electronic cash transfer is analogous to the transter of rights (not to
be confused with the copying of rights) in a capability based protection system
[31]. Electronic cash may be used to purchase capabilities which are single-use
rights, i.e., tokens that are consumed by leasing a computer program or printing a
cryptographic stamp.

What about the other models of handling electronic funds? With the credit
cards/checks analogy, the authenticity of the promise of payment must be es-
tablished. When the computer can not keep secrets for users, there can be no
authentication because nothing uniquely identifies users. Even vvhen we assume
that users can enter their passwords into a workstation without having the secrecy
of their password be compromised, we are still faced with the problem of provid-
ing privacy and integrity guarantees for network communication. We have similar
problems as in host-to-host authenticatton in that cryptographic keys necd to be
exchanged somehow. If communications s in the clear, attackers may simply
record a transferral of a promise of payment and replay it to temporarily create
cash.

With the bank rendezvous model, the “bank™ supervises the transter of funds.
While it is easy to enforce the access controls on account data, this suffers from
problems with non-scalability, loss of anonymity, and a very real risk of denial
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on the user’s own PC via the local network®, by using OCR software and reading
directly from the envelope, or by direct user input at the keyboard — and request
a cryptographic stamp from the secure coprocessor. The secure coprocessor
lowers the credit value inside it, and generates a cryptographically signed message
containing the value of the stamp, all of the addressing information, the date, the
ID of the secure coprocessor, and other serial numbers. This message (a bit vector)
is sent to the PC, which encodes it in 4 machine readable manner and prints it on
the laser printer to be affixed to an envelope or package. Advanced bar coding
technology such as PDF417 meationed in Section 2 may be employed.

5.1 Postage Meter Currency Model

Pcstage credits held within an electronic postage meter are simpler than general
electronic currency because of their restricted usage. Postage credits must be
purchased from .he post office, and the credits may only be used to purchase
cryptographic <tamps (or be transferred to another electronic postage meter).

Because of the usage restrictions, we do not have to deal with the general
electronic currency problem. We can take advantage of these restrictions o the
currency model and achieve simpler solutions. Furthermore, because pieces of
mail stamped by electronic postage meters are likely to be all mailed in the same
locality, the problem of detecting replays can be solved with much lower overhead
than otherwise by exploiting this locality property.

5.2 Reloading a Meter

Only post offices may reload postage meters. Unlike their older brethren, electronic
postage meter equipment need not be carried to the local post ofiice when the
amount of credit inside runs low — the local post office can simply provide a
phone number whereby businesses may call to “recharge™ their electronic postage
meter by phone, using credit card numbers or direct electronic funds transfer
for payment. By equipping electronic postage meters with modems (much like
newer vending machines), we can update postage meters’ credit remotely and
automatically. Note, however, that regardless of whether an electronic postage
meter uses a phone or a direct wire connection to update its postage credit, some

*The word processing software can even provide good weight estimates since it knows how
many pages are being printed.




of service from excessive centralization: Because every transaction must contact
the bank server, access to the bank service will be a performance bottleneck.
The system does not scale well to a large user base — when the bunk system
must move from running on a single computer to a several machines, distributed
transaction systems techniques must be brought to bear anyway, so this model has
no real advantages over the use of secure coprocessors in case of implementation.
Users have no assurance that their privacy is being protected, since the central bank
computer may expose its logs without the users’ knowledge. Furthermore, denying
access to the bank host — whether by crashing it directly, by cutting network feeds
to it, or just due to normal hardware failures — means that nobody can make use of
any bank transfers. This model does not exhibit graceful degradation with system
failures.

The secure coprocessor managed electronic currency model not only can pro-
vide the properties of (1) anonymity, (2) conservation, and (3) decentralization but
it also degrades gracefully when secure coprocessors fail. Note that secure copro-
cessor data may be mirrored on disk and backed up after being properly encrypted.
and so even the immediately affected users of a failed secure coprocessor should
be able to recover their balance. The security administrators who initialized the
secure coprocessor software will presumably have acce,s to the decryption keys
for this purpose — careful procedural security must be required here. The amount
of redundancy and the frequency of backups depends on the reliability guarantees
desired; in reliable systems secure coprocessors may continually run self-checks
when idle and warn of impending failures.

5 Personal Computer Based Postage Meters

By using secure coprocessors in a PC-based system, we can build a secure postage
meter that is svitable for many businesses. The equipment required for our elec-
tronic postage meter is a secure coprocessor, a PC (which serves as the host for the
coprocessor), a laser printer, a modem, and optionally an optical character recog-
nition (OCR) scanner and/or a network interface. Like ordinary postage meters,
our PC-based postage meter operates in an office environment where the postage
meter is a shared resource, much as laser printers are today.

The basic idea is simple: we obtain the destination and return addresses and
weight/delivery class from the user — directly from the word processor running




method must be used to protect the meters’ communication with the local post
office. Otherwise, a malicious user may record the control signals used to update
an electronic postage meter’s credit balance and replay that recording into another
postage meter. To protect the electronic postage meters from this form of replay
attack we can simply encrypt all the data transmitted. By using encryption to
protect the communication channel, we also protect businesses’ credit card or
EFT account numbers being sent over the communication lines from being used
by malicious eavesdroppers.

To establish an encrypted communication channel, we must first obtain en-
cryption keys to be used for the channel. Temporary session keys may be acquired
by running a key exchange protocol — this minimizes the risks of exposure of the
permanent private keys and allows for the use of faster symmetric cryptosystems
such as DES for the encryption of the bulk of the data. In addition to exchanging
keys, some form of authentication protocol is required to assure that the postage
meter is indeed talking to the post office and that the post office is indeed talking
to a valid postage meter. Some key exchange protocols such as Diffie-Hellman[6]
protocol do not provide any identification information, where as others such as
RSA[25] or the Strongbox algorithm [27] may be used to simultaneously exchange
keys as well as authenticating identities.

On top of the secure, encrypted communication channel, we may run a trans-
action protocol such as two-phase commit 10, 9, 8] which makes the entire credit
transfer occur in a failure atomic way. The nonvolatile memory within the secure
coprocessor provides permanence of the data, and serializability is easily obtained
due to the limited scopes of the transactions.

5.3 Cryptographic Protection of the Stamp

Stamps, as mentioned in Section 2, must be cryptographically signed to prevent
any alteration. This may be achieved using a public key system such as RSA[25],
the Rabin function [23], or the recently proposed Digital Signature Standard[16],
either alone or in conjunction with a cryptographic hash function [ 13, 24, 15].
Cryptographic stamps consist of the cryptographic signature of the source and
destination addresses (full addresses, not just ZIP+4), hierarchical authorization
number (ID of authorizing post office computer), postage meter serial number.
stamp sequence number, amount of postage and postage class, and the time and
date. [n addition to the signature, this information may optionally appear in
unencrypted form or plaintext to simplify processing stages where we require fast,
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easy access to the addresses. A quick back of the envelope calculation shows
that if we allow 6 lines of 40 full ASCII characters for each address, four bytes
each for hierarchical authorization number, the postage meter serial number, the
stamp sequence number, the postage/class, and the time, this is a little less than
500 bytes of data. The addressing data can certainly be more compactly encoded,
and even if we encode a complete plaintext copy as well as the cryptographically
signed copy, this is less than 1K of data. It would require just over two and one
half square inches when encoded using PDF417.

5.4 Detecting Replays

To make replay detection easier, we exploit the physical locality property: pieces
of mail stamped by a postage meter are likely to enter the mail processing system at
the same region office. Therefore, cryptographic stamps from the same electronic
postage meter are very likely to be canceled at the same region office, and we
can simply put a database at that facility containing a list of all the electronic
stamps from that meter that have been canceled. If any cryptographically stamped
piece of mail is sent to another mail cancellation site than the usual one, network
connections can be used for real-time remote access of cancellation databases. or
removable media such as computer tapes may be used for batch-style processing.
In the case of real-time cancellation, the network bandwidth required depends on
the probability of the occurrence of such multi-cancellation-site processing, and
on how quickly we need to detect replays. The canceled stamps database at each
region office need not be large — because each postage meter can simply supply
a counter value in each of its stamps, we need only fast access to a bit vector of
the recently used, unexpired stamps. These bit vectors are indexed by the postage
meter’s serial number, and can be compressed by run-length encoding or other
techniques. Only when a replay is detected might we need access to the full routing
information.

Detecting replays locally is feasible with today’s technology. Using the 1992
figures of 1.6 x 10'! pieces of mail per year handled at 6 x 10 regional offices.
we can obtain an estimate of the storage resources required. Assuming that we set
the expiration of cryptographic stamps at 6 months after printing date, it wouid
mean that an average regional office will need to keep track of an average of
1.3 x 10® stamps at a time. Even if we store one kilobyte of information per stamp
(doubling the estimate above) and assume that the entire current mail volume is
converted to using cryptographic stamps, this would require only 130 gigabytes
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of disk storage per facility, well within the capacity of a single disk array system
today. A fast, bit vector representation for duplicate detection would require 1300
megabits of storage plus indcxing overheads, or just |7 megabytes plus overhead
— an amount of storage that can easily fit into the RAM of a single average PC.
While additional space may be required for indexing to improve throughput and
for replication (disks) to improve reliability, the amount of storage required is
quite small.

5.5 Key Management

In the discussion so far, we have had two public keys associated with cach elec-
tronic postage meter: the first is the key that is used for key exchange when the
meter is to be reloaded, and the second is the key that is used to sign cryptographic
stamps. Corresponding to each of these private keys is a public kev. and these
public keys are maintained by the post office computers. The public/private key
pairs are created when postage meters are loaded with thetr software and can never
change — at best, an electronic postage meter may be reinitialized by the post of-
fice with new keys — the secure coprocessor firmware will only allow private kevs
to be destroyed and not revealed. While it is possible to use a single public/private
key pair for both key exchange and signatures, greater care must be taken to avoid
exposing the private key due to different usages by the two protocols.

The cryptographic stamp signature keys and the key exchange keys are pro-
tected by the physical security properties of secure coprocessors. The database of
electronic postage meter serial numbers and corresponding signature public keys
are accessed mostly by the local post office and can therefore be maintained on
servers at the local post office along with the canceled stamps data. Cryptographic
keys may be scaled in size to provide different amounts of protection. For the RSA
or Rabin cryptosystem, 330 bit (or 100 decimal digit) composite numbers suffices
to provide security well into the next 30 years. Thus, the storage requirements
for the public keys database are modest — rounding to 500 bits of key data and
assuming one postage meter for every thousand pieces of mail, this is only two
thousand public keys per regional office, or 125Kbytes of data.

A master database that maps from postage meter serial numbers to public
key servers may be useful, though the return address data should be sufficient to
restrict the number of post offices that must be queried to locate the public key.
A master database would have 1.6 < 10® entries; assuming a 32-bit word per
entry for a ZIP+4 code, this is a 640 megabyte table. Since this data is used in a

15




read-only fashion and should be accessed relatively infrequently, we may simply
just locally cache the portions of the database from a central server as it is needed
or even publish the entire database as a CD-ROM. There are few cache coherency
problems — in the unlikely case that the public key is most frequently used at
the locale of a different postage handhing facility than the one in which it was
purchased/leased, it would be a simple matter to maintain a duplicate copy of the
stamp signing key or a pointer to the other locaie.

Unlike the stamp signing key, the public half of the key exchange key of the
electronic postage meters is used for encryption rather than digital signatures. They
have much the same locality properties as the stamp signing keys, but their tsage
is very different: key exchange keys are used to create a secure communication
channel between post offices and the postage meters for reload, which is an
infrequent operation. The post office accounts computers are the only clients for
the public key database, and to perform the reverse authentication (proving the
identity of the post office computer to the postage meters) the accounts computer
must have access to the private half of the post office public key. This key must
be carefully protected by a secure coprocessor from exposure, since an attacker
who obtains a copy can easily “sell” postage credit to any electronic postage
meter. Similarly, access to accounting computers’ secure coprocessors must be
controlled, both physically and by password protection. Without both of these
access controls, attackers may be able to steal an accounting computer’s secure
coprocessor and just use it to sell postage credits.

To limit the risk of exposing the post office’s private key, we can provide a
hierarchy of keys. Every post office can have a separate public/private key pair,
and these public/private keys need not be known to every electronic postage meter.
The postal service maintains a single pair of master keys, the public half of which
is known to every electronic postage meter. The master key is used to certifv the
post office keys: the public key of each post office is cryptographically signed
using the private half of the master key pair. Thus, when an electronic postage
meter contacts a new post office branch, the branch may present it with the digitally
signed certificate showing its public key is indeed that of a real post office. This
public key may then be cached in the secure coprocessor within the postage meter
for future use. By using hierarchical keys, we avoid having to protect a single
key that must be kept at every post office — if a particular post office branch’s
keys were compromised, only the postage meters that purchased postage from that
branch is affected.
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6 Alternative Approaches

There are several alternative approaches to the problem of providing electronic
stamps. One is to simply use encrypted serial numbers as stamps — the post office
simply logs them as valid stamps as they are sold. When a piece of mail is marked
with that number, the postal service accepts it as valid and strikes the number from
its logs. The post office ID may be incorporated as part of the serial number, und
the locality property discussed above would still apply. Because the serial numbers
are encrypted, malicious users can not guess the next stamp number and will not be
able to generate new stamps on their own. Honest users, however, are not protected
from the attackers who may look over the honest users’ shoulders or otherwise
copy the stamp numbers for their own use — as long as the attackers use the copied
stamps before the legitimate user does, the attack succeeds. Furthermore. until
the honest user actually attempts to use his/her stamps. the crime is undetectable.
Without a secure coprocessor to hold the stamps and prevent copying, there is no
way to prevent this type of attack.

7 Future work

We have argued that a cryptography-based electronic mail system is feasible, and
that we could use a secure coprocessor to ensure the security of such a syvstem
against attack. In the future, we hope to explore:

e alternative schemes for protecting electronic stamps.

e methods for evaluating the security of arbitrary cryptographic schemes for
protecting electronic franking,

e integration with other electronic currency schemes and tamper-proof archi-
tectures,

¢ and integration with potential post office services, such as integration with
electronic commerce.

17




8 Acknowledgments
We are deeply grateful to Paul Goodman for a number of suggestions on the

problem of electronic stamps. We would also like to thank Steve Guattery for his
helpful comments.

18




References

{1] Andrea J. Borr. Transaction monitoring in Encompass (TM): Reliable dis-
tributed transaction processing. In Proceedings of the Verv Large Database
Conference, pages 155-165, September 1981.

{2] Dennis K. Branstad, December 1992,
[3] Julius Cesar. Cesar’s Gallic Wars. Scott, Foresman and company, 1935,

[4] David Chaum. Security without identification: Transaction systems to make
big brother obsolete. Communications of the ACM, 28(10):1030-1044, Oc-
tober 1985.

(5] C. J. Date. An Introduction to Database Svstems Volume 2. The System
Programming Series. Addison-Wesley, Reading, MA, 1983,

[6] W. Diffie and M. E. Heliman. New directions in cryptography. /[EEE Trans-
actions on Information Theory, IT-26/ "):644-654, November 1976.

[7] Hans Eberle. A high-speed DES implementation for network applications.
Technical Report 90, DEC System Research Center, September 1992,

[8] Jeffrey L. Eppinger, Lily B. Mummert. and Aifred Z Spector. Camelot and
Avalon: A Distributed Transaction Facility. Morgan Kaufmann, 1991.

[9] James N. Gray. A transaction model. Technical Report RJ2895, IBM Re-
search Laboratory, San Jose, California, August 1030,

[10] James N. Gray. The transaction concept: Virtues and limitations. In Pro-
ceedings of the Very Large Database Conference, pages 144-154, September
1981.

[11] StuartItkin and Josephine Martell. A PDF417 primer: A guide to understand-
ing second generation bar codes and portable data files. Technical Report
Monograph 8, Symbol Technologies, April 1992.

{12} A.Longacre Jr. Stacked bar code symbologies. IdentificationJ.. 1 1(1):12--14,
January/February 1989.




[13] R. R. Jueneman. Message authentication codes. [EEE Communications
Magazine, 23(9):29-40, September 1985.

[14] J. McCrindle. Smart Cards. Springer Verlag, 1990.

[15] R. Merkle. A software one way function. Technical report, Xerox PARC,
March 1990.

[16] National Institute of Science and Technology. A proposed federal informa-
tion processing standard for digital signature standard. Technical Report
Docket No. 910907-1207, RIN 0693-AA86, National Institute of Science
and Technology, 1991.

{17] Elaine R. Palmer. Introduction to Citadel - a secure crypto coprocessor
for workstations. Technical Report RC18373, Distributed Security Systems
Group, IBM Thomas J. Watson Research Center, September 1992.

(18} R. C. Palmer. The Bar-Code Book. Helmers Publishing, 1989.

[19] José Pastor. CRYPTOPOST™: A universal information based franking
system for automated mail processing. U.S.P.S. Advanced Technology Con-
ference Proceedings, 1990.

[20] Theo Pavlidis, Jerome Swartz, and Ynjiun P. Wang. Fundamentals of bar
code information theory. Computer, 23(4):74-86, April 1990.

[21] Theo Pavlidis, Jerome Swartz, and Ynjiun P. Wang. Information encoding
with two-dimensional bar codes. Computer, 24(6):18-28, June 1992.

[22] R. G. Andersen. The destiny of DES. Datamation, 33(5), March 1987.

{23] Michael Rabin. Digitized signatures and public-key functions as intractable
as factorization. Technical Report MIT/LCS/TR-212, Laboratory for Com-
puter Science, Massachusetts Institute of Technology, January 1979.

[24] R. Rivest and S. Dusse. The MD3 message-digest algorithm. Manuscript,
July 1991.

{25] R. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital
signatures and public-key cryptosystems. Communications of the ACM,
21(2):120-126, February 1978.

20




(26]

(27]

(28]

[29]

(30]

(31]

J. D. Tygar and Bennet S. Yee. Dyad: A system for using physically se-
cure coprocessors. Technical Report CMU-CS-91-140R, Carnegie Mellon
University, May 1991.

J. D. Tygar and Bennet S. Yee. Strongbox: A system for self securing
programs. In Richard F. Rashid, editor, CMU Computer Science: 25th
Anniversary Commemorative. Addison-Wesley, 1991,

Steve H. Weingart. Physical security forthe pABYSS system. In Proceedings
of the IEEE Computer Society Conference on Securitv and Privacy. pages
52-58, 1987.

Steve R. White, Steve H. Weingart, William C. Arnold, and Elaine R. Palmer.
Introduction to the Citadel Architecture: Security in Physically Exposed
Environments. Technical Report RC16672, Distributed Security Systems
Group, IBM Thomas J. Watson Research Center, March 1991. Version 1.3.

Jeannette Wing, Maurice Herlihy, Stewart Clamen, David Detlefs, Karen
Kietzke, Richard Lerner, and Su-Yuen Ling. The Avalon language: A tutorial
introduction. In Jeffery L. Eppinger, Lily B. Mummert, and Alfred Z. Spector,
editors, Camelot and Avalon: A Distributed Transaction Facility. Morgan
Kaufmann, 1991.

W. A. Wulf, E. Cohen, W. Corwin, A. Jones, R. Levin, C. Pierson, and
F. Pollack. Hydra: The kernel of a muiltiprocessor operating system. Com-
munications of the ACM, 17(6):337-345, June 1974,

21




